
sphinx-litprog Documentation

Florian Brucker

Mar 22, 2019

Contents

1 Installation 3

2 Usage 5

3 Change Log 7

4 Development 9

5 The Extension 11
5.1 Module Header . 11
5.2 The litprog Directive . 12
5.3 The litprog Builder . 13
5.4 Sphinx Integration . 14

i

ii

sphinx-litprog Documentation

A Sphinx extension for literate programming.

Literate programming is a programming technique which mixes formal source code and its explanation in natural
language in the same document. sphinx-litprog allows you to embed source code directly into a Sphinx document and
will automatically export that code into an external file from where it can be tested, used as a module, etc.

An example for this approach is sphinx-litprog itself, which is developed using literate programming.

Contents 1

https://www.sphinx-doc.org
https://en.wikipedia.org/wiki/Literate_programming

sphinx-litprog Documentation

2 Contents

CHAPTER 1

Installation

sphinx-litprog can be installed via pip:

pip install sphinx-litprog

After installing the extension, you need to activate it in your Sphinx project. To do this, add 'sphinx_litprog'
to the list of extensions in in your conf.py:

extensions = [
...
'sphinx_litprog'

]

3

http://www.sphinx-doc.org/en/master/usage/configuration.html#confval-extensions

sphinx-litprog Documentation

4 Chapter 1. Installation

CHAPTER 2

Usage

Literate programming using sphinx-litprog consists of two steps. First, you use the litprog directive to embed
source code in your Sphinx documents:

A simple implementation of the **Fibonacci sequence** in Python is
via recursion:

.. litprog::

def fib(n):
if n <= 2:

return 1
return fib(n - 1) + fib(n - 2)

You can use litprog directives in multiple documents, and multiple litprog directives per document.

When used with the default Sphinx builders (e.g. the HTML builder), the litprog directive produces the same
output as the code-block directive.

Afterwards, use the litprog builder to extract the embedded source code into a separate file:

sphinx-build -b litprog /your/sphinx/project /output/directory

This will export the source code from the litprog directives into a file called litprog.py inside the output di-
rectory. You can change the name and the location of the exported file using the litprog_filename configuration
setting in your conf.py:

Path to the file containing the exported literate programming
source code, relative to the output directory.
litprog_filename = some/other/path.py

Code from multiple litprog directives in the same document is exported in the order of the directives. Code
from litprog directives in multiple documents is exported in the order of the documents according to the Table of
Contents (as defined by Sphinx’s toctree directive) in depth-first fashion.

The litprog directive supports the same arguments and options as the code-block directive. In addition, the
:hidden: flag hides the content in the normal documentation output (but not in the exported source code).

5

https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-code-block
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-code-block

sphinx-litprog Documentation

6 Chapter 2. Usage

CHAPTER 3

Change Log

Please refer to the file CHANGELOG.md.

7

https://github.com/torfsen/sphinx-litprog/blob/master/CHANGELOG.md

sphinx-litprog Documentation

8 Chapter 3. Change Log

CHAPTER 4

Development

sphinx-litprog itself is developed using literal programming. Version control and issue management happens on
GitHub.

9

https://github.com/torfsen/sphinx-litprog
https://github.com/torfsen/sphinx-litprog

sphinx-litprog Documentation

10 Chapter 4. Development

CHAPTER 5

The Extension

As an example, here is the source code of the sphinx-litprog extension itself in literate programming style.

The source code you see on this page is not copied from the sphinx_litprog Python module — the module is
instead generated from the code on this page! That is, the sphinx-litprog extension is itself developed using literate
programming.

For more details, take a look at the source code of this documentation page and at the automatically generated module
code.

5.1 Module Header

Our module starts with its docstring, which documents its overall purpose:

'''
A literate programming extension for Sphinx.
'''

Next, in accordance with PEP8, we have the imports. We need

• os.path for generating the output filename,

• docutils.parsers.rst.directives for defining the options of our directive LitProgDirective,

• sphinx.builders.Builder as the superclass for LitProgBuilder, and

• sphinx.directives.code.CodeBlock as the superclass for LitProgDirective.

import os.path

from docutils.parsers.rst import directives
from sphinx.builders import Builder
from sphinx.directives.code import CodeBlock

We define the version of our module, using Semantic Versioning (see the change log for a history of changes):

11

_sources/index.rst.txt
https://github.com/torfsen/sphinx-litprog/blob/master/sphinx_litprog/__index__.py
https://github.com/torfsen/sphinx-litprog/blob/master/sphinx_litprog/__index__.py
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0008/#id23
https://docs.python.org/3/library/os.path.html#module-os.path
https://www.sphinx-doc.org/en/master/extdev/builderapi.html#sphinx.builders.Builder
https://semver.org/
https://github.com/torfsen/sphinx-litprog/blob/master/CHANGELOG.md

sphinx-litprog Documentation

__version__ = '0.1.1'

5.2 The litprog Directive

The first part of our extension is a custom reStructuredText directive which marks the source code portions of a literate
programming document.

In the generated documentation, the content of the directive is displayed like in the code-block directive, therefore
we extend the corresponding class sphinx.directives.code.CodeBlock.

class LitProgDirective(CodeBlock):
'''
Literate programming directive.

Supports the same arguments/options as the ``code-block``
directive.

In addition, the ``:hidden:`` flag can be used to hide the
content of the directive in the generated documentation (it will
still be included in the exported literate programming source
code).
'''
In old Sphinx versions, the CodeBlock directive has a required
argument for specifying the programming language.
required_arguments = 0

option_spec = dict(CodeBlock.option_spec)
option_spec['hidden'] = directives.flag

def run(self):
Store content in environment for later export
env = self.state.document.settings.env
doc_snippets = _get_snippets(env).setdefault(env.docname, [])
doc_snippets.extend(self.content)

if 'hidden' in self.options:
Don't produce output in the documentation
return []

Provide fake argument so that CodeBlock is happy in old
Sphinx versions
self.arguments = ['python']

Delegate node creation to superclass
return super().run()

The main part of that class is the run`() method, which is called when the directive is encountered while parsing a
restructuredText document.

The job of run`() is to create the nodes which represent the directive’s content in the document tree. We simply
delegate that task to CodeBlock.run(), unless the :hidden: flag is set, in which case we return no nodes at all
(so that the directive’s content does not show up in the generated documentation).

Before doing that, however, we perform a crucial part of our extension’s functionality: the raw content of the directive
is stored in Sphinx’s environment, from where it is later loaded by our builder when the literate programming source
code is exported to a file.

12 Chapter 5. The Extension

http://docutils.sourceforge.net/docs/ref/rst/directives.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-code-block
http://docutils.sourceforge.net/docs/ref/doctree.html
https://www.sphinx-doc.org/en/master/glossary.html#term-environment

sphinx-litprog Documentation

We store the literate programming snippets from all restructuredText documents in a central datastructure that maps
each document name to a list of lines. To initialize that data structure we use a little helper function:

def _get_snippets(env):
'''
Get the literate programming snippets from the environment.

The snippets mapping is initialized if necessary.
'''
if not hasattr(env, 'litprog_snippets'):

env.litprog_snippets = {}
return env.litprog_snippets

5.3 The litprog Builder

The job of the builder is to take the source code snippets from Sphinx’s environment and write them to a file in the
correct order.

Like all Sphinx builders we inherit from sphinx.builders.Builder. Since our builder is not a typical builder
like the ones for HTML or text output, most of our method implementations do nothing.

The method Builder.get_outdated_docs() is called by Sphinx to get a list of the documents whose output
files for that builder are outdated. Since our builder does not have a 1-to-1 mapping between documents and output
files we simply return a list of all documents.

class LitProgBuilder(Builder):
name = 'litprog'

def get_outdated_docs(self):
return self.env.found_docs

def get_target_uri(self, *args, **kwargs):
return ''

def prepare_writing(self, *args, **kwargs):
return

def write_doc(self, *args, **kwargs):
return

def finish(self):
config = self.app.config
env = self.app.env
snippets = _get_snippets(env)
filename = os.path.join(self.outdir, config.litprog_filename)
with open(filename, 'w', encoding='utf-8') as f:

for docname in _docnames_in_toc_order(env):
doc_snippets = snippets.get(docname, [])
if doc_snippets:

f.write('\n'.join(doc_snippets) + '\n')

The actual work is done in the finish() method: we iterate over all document names in depth-first order as defined
by the toctree directive and write the corresponding source code snippets to a file.

The name of the output file is obtained from the litprog_filename configuration setting which we set up later
on.

5.3. The litprog Builder 13

https://www.sphinx-doc.org/en/master/extdev/builderapi.html#sphinx.builders.Builder
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-toctree

sphinx-litprog Documentation

We use a generator function to provide the document names in the correct order:

def _docnames_in_toc_order(env):
'''
Yields all docnames in depth-first TOC order.
'''
includes = env.toctree_includes
stack = [env.config.master_doc]
while stack:

docname = stack.pop()
yield docname
children = includes.get(docname, [])
stack.extend(reversed(children))

5.4 Sphinx Integration

Now that we have implemented our directive and our builder we need to register them with Sphinx so that they can
actually be used. This is done in the setup function, which Sphinx automatically calls for every extension listed in
the extensions configuration setting.

def setup(app):
app.add_builder(LitProgBuilder)
app.add_directive('litprog', LitProgDirective)
app.add_config_value('litprog_filename', 'litprog.py', '')
app.connect('env-purge-doc', _purge_doc_snippets)
return {

'version': __version__,
'env_version': 1,
'parallel_read_safe': True,
'parallel_write_safe': True,

}

We register our builder, our directive, and the litprog_filename configuration option. In addition, we install a
custom event handler for the env-purge-doc event. This allows us to clear the stored snippets for a given document
when that document is removed or before it is parsed again:

def _purge_doc_snippets(app, env, docname):
_get_snippets(env).pop(docname, None)

14 Chapter 5. The Extension

https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx-core-events

	Installation
	Usage
	Change Log
	Development
	The Extension
	Module Header
	The litprog Directive
	The litprog Builder
	Sphinx Integration

